
The electronic structure of liquid and amorphous Se: chain models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 613

(http://iopscience.iop.org/0953-8984/9/3/003)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 06:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 613–626. Printed in the UK PII: S0953-8984(97)74479-5

The electronic structure of liquid and amorphous Se: chain
models

Thorsten Koslowski
Institut für Physikalische Chemie und Elektrochemie I, Universität Karlsruhe, Kaiserstraße 12,
D-76128 Karlsruhe, Germany

Received 14 May 1996

Abstract. We present a numerical study of the electronic structure of simple models of liquid
and amorphous selenium. The geometry is based upon random walks; the electronic structure
is described by a tight-binding Hamiltonian. We investigate the influence of the bond- and
dihedral-angle distribution, the range and nature of the tight-binding hopping matrix element
and the sign and magnitude of the electron–electron interaction upon the density of states.
Localization properties and charge profiles have been computed.

To reproduce the experimentally observed optical gap, it is essential to fix the dihedral angles
and to introduce an intraorbital electron–electron attraction of modest strength(U ' −2 eV).
In contrast to local descriptions of bond breaking in disordered Se, we observe the formation
of two negatively charged chain ends, compensated by the creation of a bipolaron within the
chain. Only bipolaron states are able to occupy an impurity band. A simple mechanism for
Fermi level pinning is discussed. We give an outlook on the electronic properties of related
three-dimensional models.

1. Introduction

The unique and striking properties of liquid and amorphous selenium have provoked a vast
amount of experimental and theoretical studies on the geometry and the electronic structure
of this element in its disordered state [1–3]. At the melting point, the highly viscous liquid
Se is believed to consist of chains ofn = 105 to 106 atoms [4]. The structure of Se under
these conditions can be described by a random-chain model [5, 6], with nearest-neighbour
distances and bond angles similar to those of the crystalline solid (r0 = 2.373 Å, bond
angle φ = 103.1◦ and dihedral angleψ = 100.6◦ [7]). The existence of a ring-chain
equilibrium for liquid Se has been challenged [8], whereas a77Se NMR study by Warren
and Dupree [9] has confirmed the shortening of Se chains with increasing temperature. As
the radial distribution functions for liquid and amorphous Se show the same basic features—
as indicated by neutron scattering experiments [10, 11]—and as we are interested in the
electronic structure and less so in dynamical properties, we will in the following treat the
two types of disorder on an equal footing.

Only quite recently has liquid Se attracted the attention of computational chemists and
physicists. Balasubramanianet al [12] have simulated ensembles of short Se chains using
a harmonic potential between nearest neighbours and the Lennard-Jones potential for all
other interatomic interactions. Bichara and co-workers [13] have performed a tight-binding
Monte Carlo simulation of liquid Se, using a short-range soft-sphere repulsion and a moment
approximation to the local tight-binding density of states. The authors find a completely
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different local arrangement of selenium atoms to that in the simple chain model: Se chains
are comparatively short, and a large number of threefold-coordinated Se atoms compensates
the number of chain ends, leading to an average coordination number of two. Recently,
attempts to simulate liquid Se utilizing Car–Parrinello molecular dynamics—using the local
density approximation (LDA) for the electronic structure calculation—have been performed
for small systems [14, 15]. All simulation work cited above leads to—according to the
corresponding authors—an excellent agreement of the computed and the experimental pair
distribution function. The bond-angle distributions are broad and peak at∼105◦. It is
one of the aims of this work to address the question of whether the differences in local
geometries—manifest in the system’s bond or dihedral angles—have a profound influence
on the electronic structure and may favour one of the models. For all simulations of
Se—classical or quantum mechanical—close to the melting point, the high viscosity of the
liquid remains a major challenge. Extremely long MD runs or Monte Carlo techniques
of the ‘reptation’ type [16] are required to explore the configuration space of the polymer
properly [17].

Selenium shows semiconducting behaviour in the trigonal crystalline phase (σ from
10−5–10−6 S cm−1 [18] down to∼10−10 S cm−1 [19], T = 298 K), the amorphous phase
(σ = 10−16 S cm−1, T = 298 K [20]) and at the melting point (σ = 4 × 10−9 S cm−1,
T = 490 K [19]). Approaching the critical point (pc = 380 bar,Tc = 1860 K [21]),
strongly enhanced conductivities close to values typical of dirty metallic behaviour (100–
300 S cm−1) have been observed. Warren and Dupree have suggested that chain shortening
may be responsible for the conductivity enhancement [9], an interpretation supported by
a recent study of the localization properties of a lattice model of liquid Se [22]. Despite
the highly disordered nature of the amorphous solid, Se atoms do not carry local magnetic
moments as deduced from the absence of a corresponding ESR signal [23], whereas in the
liquid phase there is clear evidence for paramagnetism above 1073 K [24]. The paramagnetic
contribution to the susceptibility of the liquid has an activation energy of 0.66 eV over most
of the semiconducting transport regime.

The electronic structure of disordered Se has been discussed by Street, Mott and Davis
(see [25]) and by Kastner, Adler and Fritzsche (KAF) [26] within a picture of local chemical
bonding. Supported by Anderson’s hypothesis of an effective electron–electron attraction in
systems with a strong degree of electron–phonon coupling [27], Street and Mott have argued
that a Se–Se bond is likely to be broken heterolytically [25]. The reaction 2D0 → D+ +D−

is favoured by a change of the internal energy of the order of the strength of the electron–
electron attraction,U (the underlying Hubbard model will be described below). In the KAF
model, a defect and those orbitals on its neighbours that participate in a chemical bond with
the defect are considered. The interaction between a singly coordinated, positively charged
C+

1 (D+) centre and a C02 atom within the chain is considered to be strong enough to lead
to the formation of a Se atom with threefold coordination, a C+

3 centre. As both models are
based upon a local picture, they necessarily underestimate the kinetic energy of an electron
moving along a Se chain. The influence of the kinetic energy will inevitably broaden
the atomic or molecular orbitals into bands and screen the electron–electron interaction,
irrespective of its sign.

In this article, we present a simple model of the electronic structure of amorphous and
liquid Se. The underlying geometry is based upon random-walk models, and the electronic
structure is described by a tight-binding model incorporating the influence of electron–
electron interaction. In the following section, details of the model will be presented. For
a variety of parameters, the density of states, the localization properties of eigenfunctions
and the charge distribution are computed numerically. In the third section, the results thus
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obtained are compared to experiments and discussed in the framework of the defect models
referred to above. Conclusions are derived in the last section.

2. The model

Bellissent and Tourand [5] have described the geometry of selenium melts up to 1173 K by
a model ofnearly free rotating chains (NFRC), embedding a coordination number of two, a
fixed bond length and a fixed bond angle. The nearest-neighbour peak is given by the bond
length, r0, the position of the next-nearest-neighbour peak is given byr1 = 2r0 sin(φ/2).
Broadening of the first two peaks in the pair distribution function can be modelled by
broadening the—still narrow—distributions of bond lengths and bond angles. The computed
and experimental structure factors presented by these authors are in excellent agreement.
Providing a geometry not in disagreement with experiments, the NFRC model and related
concepts are used as highly simplified, but controllable models that form a reasonable basis
for electronic structure computations here. The results of these calculations are the key
issue of this work.

Figure 1. Continuous random walks containing 64 atoms. Charges are indicated by shading.
Black: z ' −1 (C−

1 centres); grey:z ' +1 (bipolaron); white:z ' 0.

The geometry of Se is described by random walks of lengthn, either continuous—
identical to the NFRC model once bond angles are fixed—or, with further restrictions—
based upon a lattice. A chain on alattice random walk (LRW)is created the following way.
The first atom is placed at random on a simple cubic lattice. For the second atom of the
chain one of the six nearest-neighbour positions is chosen at random. Further atoms are
added in one of the four nearest-neighbour positions of the head atom that give rise to a bond
angle ofπ/2 until the desired number of atomsn per chain is met. For acontinuous random
walk (CRW), new atoms are created at random on a sphere of radiusr0—the average liquid
nearest-neighbour distance of 2.38Å—around the head atom. Using a rejection technique
[28], additional constraints like the limitation of the bond angle toπ/2 can be introduced.
The CRW dihedral-angle distributions are continuous, whereas the LRW dihedral angle can
only take the values of zero,π/2 andπ . For a fixed chain lengthn, the geometry of the
models presented here can be classified as either based upon a LRW or a CRW; in the latter
case the bond angle is either random (p(φ) ∝ sinφ) or takes the value ofπ/2. An example
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of a continuous random walk is presented in figure 1. Naturally, random walks can be
folded into a simulation box of lengthL = (n/ρ)1/3 with periodic boundary conditions.

The electronic structure of the model is described by a tight-binding Hamiltonian using
a basis set of three 4p orbitals centred on each selenium atom:

H =
n∑

a 6=b=1

3∑
i,j=1

c
†
iacjbViajb. (2.1)

As in all simplified treatments of Se, the low-lying 4s orbital is ignored. Thec
†
ia/cia are

creation/annihilation operators acting upon atomic orbitals|ia〉 localized at Se atoms with
index a. The hopping matrix elements are assumed to depend on the interatomic distance
following Bicharaet al [13]:

Viajb(rab) = V0 exp(−qrab) (2.2)

with q = 1.628Å−1, V
ppσ

0 = 133 eV forσ bonds andV ppπ

0 = −35 eV forπ bonds, leading
to Vppσ (r0) = 2.95 eV andVppσ (r0) = −0.78 eV. The zero of the energy scale is arbitrary.
For any arrangement of Se atoms not based upon a cubic lattice with nearest-neighbour
interactions only,σ andπ contributions have to be weighted according to the Slater–Koster
rules [29]. Modelling liquid Se by a random walk naturally neglects some of the three-
dimensional aspects of the electronic structure. The second peak in the radial distribution
function (atr ∼ 4 Å) is usually interpreted as stemming from two topological next-nearest
neighbours and a shell of Se atoms residing either on different chains or on the same chain,
more than two chemical bonds away. Topological next-nearest neighbours are considered
in some of the model Hamiltonians described below; other tight-binding interactions will
slightly broaden the density of states and may require a minor reparametrization. The
situation changes significantly once threefold-coordinated Se atoms are introduced. Some
aspects of these C3 centres will be discussed below, whereas a detailed numerical study of
their influence on the electronic structure will be the subject of future work.

Electron correlation is considered via the familiar Hubbard model [30] of intraorbital
electron–electron interaction. The thus-extended tight-binding Hamiltonian (2.1) now reads

H =
∑

a 6=b,i,j,σ

c
†
iaσ cjbσViajb + U

2

∑
aiσ

naiσ nai−σ (2.3)

with the number operatornaiσ = c
†
aicai . The disordered Hubbard Hamiltonian can be solved

self-consistently using the unrestricted Hartree–Fock (UHF) approximationnaiσ nai−σ '
naiσ 〈nai−σ 〉 + 〈naiσ 〉nai−σ − 〈naiσ 〉〈nai−σ 〉 where the brackets indicate the computation of
ground-state expectation values, in this case from a previous SCF step. The (Ising spin)
UHF problem factorizes into an up-spin Hamiltonian:

HUHF
σ =

∑
a 6=b,i,j

c
†
iaσ cjbσViajb + U

∑
ai

naiσ 〈nai−σ 〉 (2.4)

and a similar Hamiltonian for the down spin. Local (orbital) magnetic moments are given
by µai = 〈naiσ 〉 − 〈nai−σ 〉, and local charges bynai = 〈naiσ 〉 + 〈nai−σ 〉. U denotes the
effective electron–electron interaction, including a possible reduction by electron–phonon
coupling.

As we are interested in the contribution of certain atoms—particularly of the C1 defects
located at the ends of the polymer chain—to the density of states, we perform a population
analysis [31]. The charge orderqα of an eigenstate|α〉 with energyEα with respect to an
atomic orbital|ai〉 is given byqia

α = |〈α|ai〉|2. The product of the DOS andqai
α equals the

partial density of states (PDOS).
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Table 1. Chain models of Se discussed in this work.ZT B denotes twice the range of the
tight-binding interaction,σ andπ denote the type of the chemical bond,U the strength of the
electron–electron interaction, LRW stands for a lattice random walk, and CRW for a continuous
random walk.

Bond Random U DOS
Index σ π ZT B angle walk (eV) figure

1 + + 2 π/2 LRW 0 2(a)
2 + + 4 π/2 LRW 0 2(b)
3 − + 4 π/2 LRW 0 —
4 + − 4 π/2 LRW 0 —

5 + + 2 π/2 CRW 0 —
6 + + 2 Random CRW 0 —
7 + + 4 π/2 CRW 0 —
8 + + 4 Random CRW 0 2(c)
9 + − 4 π/2 CRW 0 —

10 + − 4 Random CRW 0 —
11 + + 4 > π/2 CRW 0 —
12 + + 2 > π/2 CRW 0 —

13 + + 4 π/2 LRW −2 3(b)
14 + + 4 π/2 LRW + 2 3(a)
15 + + 4 π/2 CRW −2 3(c)
16 + + 4 π/2 CRW + 2 —

Assuming that the expansion coefficientsaα
ia = 〈α|ai〉 of a wave function of a disordered

one-dimensional system show an exponential decay [32] of the type

|aα
bi | = |aα

0i | exp(−γαb) (2.5)

the localization lengthLloc = 1/γ (for clarity, the indexα will be skipped) can be computed
from

γ = −1

b
lim

b→∞
ln |abi |. (2.6)

In the theory of discrete maps,γ is called the Lyapunov exponent. For Se chains occupying
a cubic lattice with nearest-neighbour interactions—such as the models 1–4, 13 and 14
referred to in table 1—the Hamiltonians (2.2) and (2.4) can be separated into px , py and pz
problems with a one-dimensional topology. The wave-function expansion coefficients can
be generated recursively:

ab+1 = 1

Vb,b+1
[(E − εb)ab + Vb,b−1ab−1] (2.7)

with appropriate starting coefficientsa−1 = 0 anda0 = −V12. As we deal with only one
orbital per site, the indexi has been skipped. To avoid numerical overflow when applying
(2.7), the current coefficients have to be renormalized and the normalization constants are
accumulated to computeγ [33].

3. Results and discussion

The influence of the following quantities and parameters—defining the geometry and the
Hamiltonian of the simple chain model—upon the density of states has been studied
systematically.
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(1) The bond angle (either obeying a value ofπ/2 or following a random distribution).
(2) The dihedral-angle distribution via the type of the random walk.
(3) The nature of the tight-binding hopping matrix element (σ , π or σ andπ combined).
(4) The coordination numberZT B—defined as the number of neighbours to which

hopping is enabled by a non-zero matrix element (2.2).
(5) The strength and sign of the electron–electron interaction parameter,U .

For a complete list of models see table 1. For each model 1000 realizations for chains
of lengthn = 64 have been accumulated. Whenever the rôle of defects is of interest, the
use of short chains leads to a high statistical efficiency. As will be discussed below, the
length scale relevant for electronic properties is much smaller thann.

Figure 2. Densities of states for models 1 (a), 2 (b) and 8 (c); see table 1 and the text for
details. The energies are in electron volts; the densities of states are given per electron volt and
atom.

With the help of figure 2(a) (model 1, the index refers to table 1) we illustrate the
general form of the density of states obtained for the models of Se presented here. Starting
from the lowest energies, a bondingσ band is separated from aπ band that is split into
a lower bonding and an upper antibonding band. The spike atE = 0 eV is caused by C1
defect states, i.e. non-bonding orbitals not participating in bonds at the chain ends. This has
been confirmed by a population analysis, indicating a defect charge orderq(E = 0) ' 0.16
in fourfold excess of the average value of 1/32. In the absence of diagonal disorder, a chain
with nearest-neighbour hopping represents a bipartite system with a symmetric spectrum
aroundE = 0. So an antibondingσ ∗ band is separated from theπ band by a small band
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Figure 3. Densities of states for models 14 (a), 13 (b) and 15 (c); see table 1 and the text for
details. The energies are in electron volts; the densities of states are given per electron volt and
atom.

gap. For a finite chain, the Fermi level is trivially pinned at the upper band edge of the
π band, and adding or removing an electron does not affect the position ofEF drastically.
Only for an infinite or cyclic chain is the Fermi level located between theπ and theσ ∗

band.
Once next-nearest-neighbour interactions are considered (model 2, figure 2(b)) the

particle–hole symmetry is broken, and theσ and π bands overlap, whereas the shape
and the position of theσ ∗ band are essentially conserved. Vestiges of the formerπ/π∗

band are manifest as shoulders at aroundE = 0. A rough identification ofσ andπ bands
in the absence of separability is provided by setting either theσ or theπ interaction to zero.

The density of states exhibits only minor changes if the LRW geometry is replaced by
a continuous random walk, provided that the bond angle is fixed atπ/2. This behaviour is
independent of the range of the hopping matrix elements (model 1→ model 5, model 2→
model 7). However, once the bond angle is randomized, all bands are not only broadened,
but become essentially structureless. The Fermi level is located in a local minimum of
the density of states, with a large DOS(EF ). A typical example is presented in figure 2(c)
(model 8). This behaviour again does not depend onZT B and is observed even in the
absence ofπ interactions. Restricting the random bond angle to values larger thanπ/2
does not alter the DOS significantly (models 11 and 12).
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Figure 4. The orbital electronic population probability distributionp(q) for model 13; see table
1 for details. The electronic charges are in units ofe.

Electron–electron interaction plays a dominant rôle in low-dimensional systems. We
consider both electron–electron repulsion and attraction of a moderate strength ofU = ±2
eV. Starting from model 2 (ZT B = 4, σ and π interactions, LRW geometry), a repulsive
HubbardU changes the relative positions of the band centres as follows: theπ band is
shifted to higher energies, reducing the gap between the valence band and theσ ∗ conduction
band. The relative position of theσ band with respect to the centre of theσ ∗ band is almost
unchanged (figure 3(a)). Like for transition metal and rare-earth compounds, a small band
width—tantamount to a low kinetic energy as typical forπ compared toσ bands—does
inevitably enhance the influence of electron–electron interaction. A negative HubbardU

has the opposite influence: the centre of theπ band is shifted towards lower energies—
taking the centre of the unoccupiedσ ∗ band as a reference energy—and shows a stronger
overlap with theσ band (figure 3(b)). At the top of the valence band, a small impurity
band—indicated by an arrow in figure 3(b)—is split from the bulk of the density of states.
The Fermi level is now pinned in a small gap between the impurity band and the bulk DOS.
Although the number of states in the impurity band equals the number of chain ends—a
fact also confirmed for chains of different length—their defect charge order is vanishingly
small. Within the model described here, the impurity band can thus not be interpreted as a
band originating from C1 centres.

From the energy-resolved defect charge order it rather transpires that states located at
EF in the absence of electron–electron interactions are now shifted into the interior of the
valence band by roughly 2 eV. Both ends of the chains carry an excess charge of one
electron, transforming them into C−

1 centres. The excess positive charge is moved into the
interior of the chain; its localization characteristics will be discussed below. It is interesting
to note that Warren and Dupree [9] have postulated a density of states similar in appearance
to figure 3(b) for Se close to the melting point. We have, however, to indicate again that
according to our model calculations the states in the impurity band donot originate from
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C1 states, as assumed by these authors. Replacing the LRW by a CRW geometry, we notice
that the gap between the valence band and the impurity band has vanished (figure 3(c)) and
EF is located in the tail of the valence band again.U has to be decreased to−4 eV to
lead to the formation of a C+1 and a C−1 centre. The resulting band gap, however, will be
∼1 eV too large compared to experiments and will only partly be compensated by band
broadening due to interchain interactions.

As the position of theπ valence band relative to theσ ∗ conduction band is strongly
affected by electron–electron interactions, it is the strength ofU that controls the size of the
band gap. Considering a LRW geometry withσ andπ hopping matrix elements extending
to next-nearest neighbours, a band gap of 1.1 eV is observed in the absence of electron
correlation (model 2); the gap ceases to exist forU = 2 eV (model 14); its size is increased
to 2.2 eV for U = −2 eV (LRW, model 13). The band gap between the bulk of the
valence band and the conduction band induced by an on-site electron–electron interaction
of U = −2 eV is close to the experimentally observed optical gap of∼2 eV [34]. As
expected for an intrinsic semiconductor, this is twice the value of the thermal activation
energy of the conductivity. We would like to note that despite the large value ofU , its
contribution to energies of excitation processes may actually be quite small, as spin pairing
in a singly occupied orbital can be broken by an energy of−Un↑n↓ = 2×1/2×1/2 = 1/2
eV, further reduced by screening to(1/2)Lloc of its initial value, withLloc ' 2 (see below)
denoting the minimum range over which a wave function is spread [35]. For the simple
model presented here, we have resisted the temptation of tuningU to meet the experimental
value of the band gap and the activation energy. It is interesting to note that in the absence
of electron correlation, a band gap consistent with experimental observations can only be
obtained by introducing different site energies forσ andπ atomic orbitals [36]. We believe
that the resulting improvement of the fit of tight-binding band structures to more elaborate
schemes or to experiments can be the only motivation for this parametrization. The physical
explanation for the observed effect, however, rests in the influence of an effective electron–
electron attraction.

The electron population along the chain roughly follows the patternq(pi ) − q(pj ) −
q(pk) = (2− 1− 1) (i, j, k denoting any permutation ofx, y, z), and the electron pair does
randomly localize on one of the three p orbitals. A total population of four electrons per atom
emerges, with the exception of the formation of charged C−

1 centres and the compensation of
the defect charge within the chain. None of the models studied here exhibits the formation
of local moments, and all spins are paired, as required by the absence of an ESR signal
in amorphous Se as referred to above [23]. In a local spin-density/molecular dynamics
study of small Se clusters, Hohl and co-workers have noted that the moment-carrying triplet
state of linear Se4 lies ∼0.3 eV above the singlet state [37]. Activated paramagnetism in
the liquid—as observed by Freyland and Cutler [24]—may find its explanation by a bond-
breaking process with a consecutively activated formation of a triplet state—or an otherwise
moment-carrying state—from a bipolaronic species.

The probability densityp(q) of the orbital charge is plotted in figure 4 [38]. The central
peak ofp(q) (b) can easily be assigned to a charge of∼e, characteristic for 2(n−2) orbitals
within the chain and one orbital at each end of the chain, confirmed by an integratedp(q) of
126. The integral over the first peak (a) equals 1, and the last peak (c) has an integratedp(q)

of 65, all accurate within the computational round-off error. At each end of the chain, we
find two pairs of spin-paired electrons. The excess negative charge is compensated within
the chain by reducing the charge of a pair of electrons located at two neighbouring atoms
in a twofold way. On the first orbital contributing to the defect, the charge is reduced to an
average of∼e/2 (corresponding to peak a), while on an orbital located on a neighbouring
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atom, the charge is reduced considerably less to an average of∼1.75e. The resulting object
may be identified as abipolaron. Within the KAF terminology, it can be assigned the symbol
(C2)2+

2 . This picture has also been confirmed by inspecting the charge distribution of a large
number of chains. The discrepancy of the chain end and the compensating charge is due to a
charge of singly occupied orbitals slightly less thene and charges of doubly occupied orbitals
with charges slightly below 2e. Since any positively charged defect can be interpreted as
an energy barrier for a system characterized by electron–electron attraction, defect pairing
reduces the scattering of conduction electrons. It thus enhances the kinetic energy and
consequently the band width and the cohesive energy. Whenever the restrictions on the
value of the dihedral angles are loosened, the resulting charge distribution is broadened
considerably. The resulting charge distribution along the chain is presented in figure 1 for
a single realization. It demonstrates that C−

1 centres and bipolarons continue to exist.
It is not unlikely that two C−1 centres and a bipolaron may react to form a centre with

a threefold or fourfold coordination, probably going hand in hand with a redistribution
of the bipolaron charge, resulting in similar local geometries to those postulated by
KAF. Bipolarons may be considered as structural elements in compounds like [P(C6H5)4]2

[Se(Se5)2] (a) [39] or [(C6H5)3PNP(C6H5)3]2[Se10]·(CH3)2N–CHO (b) [40]. The bipolaron
is able to attract two C−1 centres by either the atom carrying the majority positive charge—
leading to the formation of compound (a)—or by forming bonds between each of the
bipolaron Se atoms and a chain end—forming compound (b). The excess—formal—
negative charge may reside in a non-bonding orbital.

In the following, we will discuss an additional mechanism—arising from the net
Coulombic attraction between a bipolaron and two negatively charged chain ends—that
may stabilize this peculiar defect configuration. Two strategies will be used to estimate
the change of energy induced by two excess electrons localized on the chain ends of a Se
polymer and a bipolaron located in the centre of the chain. In the first approach, we ignore
the influence of charge ordering upon the polymer geometry and represent the polymer
chain by a random walk of lengthn = 64 (i.e. orders of magnitude smaller than the actual
chain length) and an end-to-end distance of

√
nr0. For convenience, the bipolaron charge

is considered as being localized on a single Se atom. UsingZ+ = 2, Z− = −1 andε = 6
we obtain

1U = e2

4πεε0r0

(
2
Z+Z−√

32
+ Z2

−√
64

)
' −0.60 eV. (3.1)

In the second approach, we follow just the opposite strategy: the influence of the polymer
geometry is neglected, and only charge ordering via the mean-spherical approximation
[41]—or its limiting case, the Debye–Ḧuckel theory of electrolytes—is considered. Using
ρ = 0.025 atomsÅ−3 andkBT = 0.05 eV, an inverse Debye–Hückel screening length

κ0 =
√

e2

εε0kBT

ρ

n
(Z2+ + 2Z2−) ' 1.17 Å

−1
(3.2)

leads to an MSA inverse screening length of

00 = −1 + √
1 + 2κ0r0

2r0
' 0.20 Å

−1
(3.3)

and a stabilization energy of

1U = − e2

4πεε0

00

1 + 00r0
(Z2

+ + 2Z2
−) ' −1.96 eV (3.4)
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per chain. In the limit of largen, both estimates scale liken−1/2, so the resulting energy
scale becomes less relevant for realistic chain lengths of∼105 close to the melting point.

As stated above, the pair distribution of amorphous Se [10] does not differ significantly
from those of the liquid state at the melting point [11]. The short-range order—characterized
by the nearest-neighbour bond length and a coordination number of roughly two—persists
up to high pressures and temperatures. With increasing temperature, however, the viscosity
decreases and the activated paramagnetic susceptibility increases. This gives indirect
evidence for the scenario of chain shortening, accompanied by an increasing number of
defects. This structural change will basically alter the ratio of the number of bulk states
to that of defect states. Chain shortening alone—discussed within a simple one-electron
model [22]—moves the Fermi level into the interior of the valence band, until it crosses a
mobility edge.

Figure 5. The localization length as a function of energy for a lattice random walk,ZT B = 4,
σ and π interactions and zero HubbardU . The localization length is in Se–Se bond lengths;
the energy is in electron volts.EF = 1.21 eV.

As described above, for a one-dimensional system with nearest-neighbour interactions
only, the localization lengthLloc can be computed iteratively.Lloc as a function of energy
is plotted in figure 5. We use a topological unit of length,Lloc being given by the
number of Se–Se bonds over which the wave function is spread. Obviously,Lloc has
to be larger than or equal to one. A geometrical—one-dimensional—localization length
can be obtained by multiplyingLloc by the Se–Se bond length, and any three-dimensional
measure of localization would have to embody thelocal centre-of-mass configuration of the
random walk (note that the proportionality of the end-to-end distance to

√
n is valid only

in the limit of large distances). Like in any system dominated by off-diagonal disorder, the
localization length exhibits a singularity atE = 0. This singularity has been damped by
introducing a small amount of diagonal disorder obeying a box distribution in the interval
[−0.1 eV, 0.1 eV]. With increasing energy, the localization length is influenced by two
trends: it reflects both the density of states—the smaller the DOS, the smallerLloc—and
exhibits a general decay towards higher energies. A local minimum of the localization
length naturally lies between theπ band and theσ ∗ conduction band in a region of an
exponentially small density of states. The limiting value of one is reached at the top of the
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conduction band. AsLloc never exceeds a value of five, all electronic phenomena in the one-
dimensional model of Se presented here are governed by this length scale. Thus the choice
of a chain lengthn = 64 > Lloc can be justifieda posteriori. We have performedbmax = 106

iterations of scheme (2.7), with a relative accuracy ofε = √
Lloc/bmax 6 2.3 × 10−3 [42].

Figure 6. The density of states based upon geometries created by a classical Monte Carlo
simulation with chains of length 64 (◦, EF = 1.08 eV) and tight-binding Monte Carlo
simulations (×, EF = 2.33 eV). The energy is in electron volts; the density of states is given
per electron volt and atom.

In the following, we will discuss preliminary results of the electronic structure obtained
from three-dimensional geometries and compare them to the chain models described above.
As the molecular dynamics [12], tight-binding Monte Carlo [13] and Car–Parrinello MD
simulations [14, 15] cited above show a broad distribution of bond angles—and consequently
randomized dihedral angles—it is no surprise that their density of states shows features
similar to the CRW models with a random bond angle described in this work. We have
simulated systems containing eight chains of 64 atoms close to the melting point using the
potential of Balasubramanian and co-workers [12]. In addition, small tight-binding Monte
Carlo simulations of systems containing 64 atoms have been performed. The coordination
number and the position of the first two peaks of the pair distribution functions are in good
agreement with the data reported by the corresponding authors. Computing the tight-binding
density of states using the Hamiltonian (2.1), we observe a broad, but structured band that
does not exhibit a band gap—or even a particularly small density of states at the Fermi
level—in either case (cf. figure 6). We think that the tight-binding Monte Carlo simulation
would greatly benefit from the consideration of electron–electron interaction effects.

4. Conclusions

We have presented a computational study of the electronic structure of simple models of
the disordered phases of selenium. The geometry has been modelled by random walks,
while the electronic properties have been computed using a tight-binding Hamiltonian. The
single-site (or zero-dimensional) models of Kastner, Adler and Fritzsche [26] or Street,
Mott and Davis (see [25]) are thus extended by electron hopping along the direction of the
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strongest tight-binding matrix elements.
Electron–electron interaction—both repulsive and attractive—has been incorporated

using the Hubbard model, and it turns out to be crucial for reproducing the size of the
band gap. It provides a simple physical justification of the difference inσ and π on-site
energies in previous tight-binding schemes [36].

The subtle interplay between effective electron–electron attraction and disorder leads to
the formation of a type of defect that has not been postulated for the disordered phases of
Se before: abipolaron formed within the chain compensating two negatively charged chain
ends. A bipolaron impurity band is split from the valence band or lies at its upper edge,
pinning the Fermi level.

Using an iteration technique, we have been able to compute the localization length as a
function of energy. In a model with nearest-neighbour hopping, Fermi level eigenstates are
always strongly localized on a length scale less than that of two Se bonds. The computed
localization length serves as a lower boundary to the localization length that can be expected
on coupling the chain weakly to a three-dimensional system.
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[33] Dücker H, Struck M, Koslowski T and von Niessen W 1994Phys. Rev.B 46 13 087
[34] Optical gap and activation energies after

Feltz A 1993Amorphous Inorganic Materials and Glasses2nd edn (Weinheim: VCH) p 185
[35] Logan D E and Siringo F 1992J. Phys.: Condens. Matter4 3695
[36] Robertson J 1983Adv. Phys.32 361
[37] Hohl D, Jones R O, Car R and Parrinello M 1987Chem. Phys. Lett.139 540
[38] For completeness, we will give thep(q) values outside the range of figure 4:p(q = 0.975) = 20.23,

p(q = 1.025) = 42.76, p(q = 1.975) = 31.49.
[39] Krebs B E, L̈uhrs E, Willmer R and Ahlers F-P 1991Z. Anorg. Allg. Chem.592 17
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